

Why Should You Consider Using Mycorrhizae?

Mycorrhizal Symbiosis

A mutually beneficial relationship, which is characterized by movement of carbon flows to the fungus and inorganic nutrients move to the plant, thereby providing a critical linkage between the plant root and soil/media/substrate.

Mycorrhizae provide better absorption of nutrients and increased water uptake to the plant in exchange for carbon supply.

ENDOMYCORRHIZAE -ARBUSCULAR MYCORRHIZAE

MONOTROPOID MYCORRHIZAE

E

ECTOMYCORRHIZAE

ERICOID MYCORRHIZAE

TYPES OF MYCORRHIZAE

ECTENDO-MYCORRHIZAE

ARBUTOID MYCORRHIZAE

ORCHID MYCORRHIZAE

Ecto vs. Endo Colonization of Plant Roots

Schematic showing the difference between ectomycorrhizae and endomycorrhizae colonization of plant roots.

© 2013 Nature Education Bonfante, P. & Genre, A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nature communications 1 doi:10.1038/ncomms1046. All rights reserved.

Endomycorrhizae (Arbuscular Mycorrhizal Fungi)

Arbuscular Mycorrhizal Fungi (AMF) colonize plant roots intracellularly (inside the root cell) and are dependent upon a living plant for growth.

General Life Cycle of Arbuscular Mycorrhizal Fungi (AMF)

- Chlamydospores (spores) form at the end of fungal hyphae either within the plant root or outside in the soil.
- 2. Upon receiving *Strigolactones* signal from plant root, the spores germinate, penetrate & colonize plant roots.
 - a. Hyphae Each of the branching filaments (fungal roots) that make up the mycelium of a fungus.
 - **b.** Arbuscules Hyphal structures with many branches within the plant roots that serve as the site of nutrient exchange.
 - c. Vesicles Mycorrhizal storage structures within the roots.

Mycorrhizal Propagules

Entities which can re-establish the mycorrhizal hyphal network with host plant roots:

COLONIZED ROOT FRAGMENTS

Fungal hyphae network within root tissues. Provide a fast fungal hyphae (re-)growth and quick colonization of target plants.

FUNGAL SPORES

Spores are normally dormant and germinate slower than root fragments. Very resilient structures.

FUNGAL HYPHAE

Extra-radical fungal hyphae can colonize plant roots quickly but have a very limited shelf-life (<2 years).

MYCORRHIZAL PRODUCT FORMULATIONS

Mycorrhizal inoculants come in a number of different formulation types. Many contain mycorrhizae only, some contain additional beneficial ingredients.

Ideal for media incorporation

Suspendable Powders

- Can be highly concentrated
- Most versatile

Liquids

 Aqueous -Limited Shelf Life

Primary Benefit of Mycorrhizae

- Expanded Root Mass
 - As much as 50 times over time, up to 2 more ft.
 - Nutrient and water absorption occurs along the entire length of the hyphae
 - Mineral nutrient uptake from the soluble and insoluble pool
 - More efficient nutrient uptake (greater nutrient inflow)
 - Better roots lead to better plants

ROOT HAIR vs. MYCORRHIZAL FUNGAL HYPHAE

Root hair:

- Maximum length is a few millimeters
- Cation absorption occurs only at the tips
- Mineral nutrient uptake from available (soluble) pool only
- The rate of nutrient inflow is lower

Mycorrhizal fungi:

- Maximum length 20-25"
- Nutrient and water absorption occurs along the entire length of the hyphae
- Mineral nutrient uptake from the soluble and insoluble pools
- The rate of nutrient inflow is greater

Expanded Root Mass

CAST 2017

Full Fertilizer,
MycoApply Treatment on Right

1/3 Less Fertilizer,
MycoApply Treatment on Right

Expanded Root Mass

Cultivate 2018

Full Fertilizer,
MycoApply Treatment on Right

Full Fertilizer,
MycoApply Treatment on Right

Mycorrhizal Applications

Secondary Benefits of Mycorrhizae

- Efficiency in Nutrient Uptake
 - Reduced Nitrogen & Phosphorus run off
 - Nutrient buffer
 - Ability to modify nutrients into a form plants can use
 - Reduced plant stress
 - Reduce high EC stress

Less Fertilizer, More Plant

Secondary Benefits of Mycorrhizae

- Improved extraction of water
 - Enhanced in ground performance
 - Reduced plant stress
 - Water buffer
 - More efficient utilization of irrigation
 - Storage of water and lipids for periods of drought

Mycorrhizal Nutrient and Water Uptake **Drought Tolerance/Shelf Life**

Study: "The effect of inoculation with the mycorrhizal fungus *Glomus intraradices* and extended drought on transplant survival of perennial herbaceous plants."

Benefits of Mycorrhizae

- Increased transplant success both as a liner/plug and in the landscape
- Improved flowering can be earlier, more prolific and more uniform
- Increased fruiting can be earlier and have higher yield
- Enhanced plant habit more lateral branching, darker foliage, higher plant grade out

Pay it Forward

- Mycorrhizal treatment benefits everyone in the customer channel after the treatment
 - Grower
 - Retailer
 - Pay by Scan
 - Guaranteed plant material
 - Landscaper
 - Home Gardener

COST OF TREATMENT

- \$0.10/tray for drench treatment
 - Divided by number of cells...
 - Ex: \$0.10 / 72 cells = \$0.0014 per plant
- Production benefits
 - higher plant grade out,
 improved plant health,
 reduced production costs
- Retail benefits
 - reduced stress during shipment, improved shelf life, less customer returns

Photo by Proven Winners

FOUR SPECIES PERFORMANCE

- MycoApply products contain a four species consortium (at a minimum).
 - Glomus mosseae
 - Glomus aggregatum
 - Glomus intraradices
 - Glomus etunicatum

Specificity of Endomycorrhizae

- Great deal of variability
- One fungal species may form association with many different plant species – low specificity
- One host plant can have mycorrhizal associations with a number of different fungal species (even at the same time)
- Each species colonizes roots at different speeds
- Each species colonizes different plant species to a different extent

Specificity of Endo Mycorrhizae

- Different species are responsible for different functional benefits
- Seasonal changes of rhizosphere microbial communities –
 "One does not fit all"
 - Soil microclimate (e.g., changes in soil moisture, phosphate availability)
 - Plant phenology
 - Plant physiology
 - Ecological conditions
- Diversity in microbial inoculants is important, because the species complement each other

SINGLE VS. FOUR SPECIES PERFORMANCE

	Endomycorrhizal Fungi			
Beneficial Factors Attributed to 4-Species MycoApply Endomycorrhizal Fungi and Their Relationships with Plants	Glomus mosseae	Glomus aggregatum	Glomus intraradices	Glomus etunicatum
Plant Nutrition Attributes				
Increased Nitrogen (N) uptake	X	X	X	X
Increased Phosphorus (P) uptake	Χ	Χ	Χ	Χ
Can access organic forms of N and P			Χ	
Increases mineral uptake			Χ	X
Effective root colonization with time- release fertilizers	Х	Х		
Tolerant of high fertility levels		Х		
(Phosphorus)		^		
High levels of enzyme activity benefiting nutrient and micronutrient acquisition	X		Х	X

SINGLE VS. FOUR SPECIES PERFORMANCE

	Endomycorrhizal Fungi			
Beneficial Factors Attributed to 4-Species MycoApply Endomycorrhizal Fungi and Their Relationships with Plants	Glomus mosseae	Glomus aggregatum	Glomus intraradices	Glomus etunicatum
Plant Growth and Establishment				
Improved performance of woody perennials	Х		Х	Х
Increases fruiting and flowering	Χ		Χ	Χ
Improves plant performance in sandy soils		Х		
Improves performance of palms and fruit trees		Х	Х	
Increases crop yields	X		X	X
Improves growth and performance of turf grasses, agricultural crops and nursery stock	Х		Х	
Very effective in agricultural soils	Χ		X	X
Improved plant establishment	Χ		Χ	X
Well adapted to a wide variety of plants and soil conditions	Х		х	
Improved growth of grain crops	Χ		X	
Increases production of vegetable crops	Χ		X	
Improved growth of tropical and subtropical fruits		X	X	

SINGLE VS. FOUR SPECIES PERFORMANCE

		Endomycorrhizal Fungi				
Beneficial Factors Attributed to 4-Species MycoApply Endomycorrhizal Fungi and Their Relationships with Plants	Glomus mosseae	Glomus aggregatum	Glomus intraradices	Glomus etunicatum		
Heat and Drought Tolerance						
Drought protection	X	Х	X	Χ		
Greatly improves drought tolerance	X		X	Χ		
Active during periods of low water availability	x		Х	X		
Suppression of plant pathogens and root diseases						
Stimulates root development	Х		Х	Х		
Keeps root systems healthier	X	Χ				
Nematode protection of roots	X		X	X		
Promotes disease suppression	X			Χ		
Effectively suppressed Verticillium wil	lt			X		
Soil Physical and Chemical Conditions						
Salt tolerance	Х		X	X		
Effective in mine reclamation	X	Χ	Χ	Χ		
Protects against heavy metal toxicity	X	X		Χ		

- What is the best application method?
 - An application that gets good contact with the roots will produce great results. Growers can choose the application method that best fits into their growing practices.
 - Soil/media incorporation
 - Plug dip
 - Direct application to roots at transplant
 - Traditional drench
 - Not via large scale horticulture injection systems, until early
 2019

- How many applications are recommended?
 - Once treated, mycorrhizae remain in a symbiotic relationship with the plant for the plant's entire life. When a plant is transplanted, the mycorrhizae join the soil ecosystem and change as it changes.
 - In most cases only once!
 - You can not overdose.

- When will I start to see a difference after applying mycorrhizae?
 - Benefits can start within four weeks, visible benefits can be seen within eight weeks.
 - Crop time can include time as a plug and/or cutting.
 - Once propagation material is planted in a larger container, benefits start to become more visible.

- Can I use fungicides if I grow with mycorrhizae?
 - Yes. A detailed list of fungicide compatibility is available from Mycorrhizal Applications.
 - Most fungicides can be used with mycorrhizae without negative impact.
 - The longer you wait to apply an "avoid use" fungicide after mycorrhizal inoculation, the better it will be for the mycorrhizal establishment and development.

- Can mycorrhizae be used with other biological products?
 - Yes. Mycorrhizae work well with other biological products, such as beneficial bacteria (Actinovate®) and Trichoderma (RootShield®).

- Can mycorrhizae be used with beneficial insects and mites?
 - Yes. Mycorrhizae do not interfere with these natural pest predators. In fact, mycorrhizal inoculation reduces plant stress, which in turn can reduce pest insect infestations.

- How do mycorrhizae differ from other microbes?
 - Without the plant, they cannot live
 - They provide a long-term impact
 - They thrive in a diverse range of conditions
 - Mycorrhizal structures store nutrients and water for later use by the plant

- What is the recommended fertility program if I use mycorrhizae?
 - For best results, we recommend keeping N levels at 200 ppm (EC 0.4)or lower and P_2O_5 levels at 100 ppm(EC 0.2) or lower while using mycorrhizae.
 - Higher levels of fertility during inoculation can reduce the ability of the mycorrhizal inoculum to form the symbiotic relationship with the root system.

- Are there any plants that will not benefit from mycorrhizal inoculants?
 - Brassicas non-mycorrhizal
 - Mustards non-mycorrhizal
 - Carnation/Dianthus non-mycorrhizal
 - Orchids & Ericaceous special mycorrhizae
 - It does not hurt a non-mycorrhizal if you treat it

- What are the application options?
 - Soil Incorporation lbs. per yard
 - Drench volume per container
 - Plug Dip 15 second absorption
 - Bareroot Dip wetting agent, 15 second absorption

- Can mycorrhizae reduce plant diseases?
 - Not an EPA registered pesticide
 - University Research has shown the benefits
 - Improved plant health by producing stronger root system
 - Life of mycorrhizae connected to life of plant
 - Research shows other mechanisms exist
 - Think of it as a good secondary defense
 - Potential to reduce need for fungicidal treatments

Who is Mycorrhizal Applications?

- 1995 company established in Dr. Mike Amaranthus' garage
- 1999 MA branched out beyond the forestry industry, and added endomycorrhizae into its product mix, establishing the MycoApply[®] brand.
- 2015 Mycorrhizal Applications became a wholly owned subsidiary of Valent BioSciences, a Sumitomo Chemical Company

MycoApply® Mycorrhizal Inoculants

Granulars

Suspendable Powders

MycoApply® Mycorrhizae

- OMRI Listed and CDFA
- OMRI LISTED For Organic Use

- Two year shelf life
- Can be stored under normal warehouse conditions, under 140°F
- Products registered in all 50 states, considered a soil amendment

Mycorrhizal pplications

Please stop by our booth and say hello!

Booth 48, 49

Questions/Technical Support

What questions do you have?

Blair Busenbark

425-429-1492 (PST)

Blair.Busenbark@mycorrhizae.com

