## Fertilizer and substrate management for container crops



Ryan Dickson ryand@uark.edu



### **Outline**

Supplying and managing nutrients in container substrates

Controlling pH and correcting pH problems

Updates on new substrates and management practices

#### How much of the crop is made of nutrients?



#### How much of the crop is made of nutrients?



# 90% water 10% solid

#### How much of the crop is made of nutrients?



Fertilizer nutrients = approx. 1% of the plant





|       | •    |      | •      |
|-------|------|------|--------|
| Lorti | 170r | nutr | ients  |
|       |      |      | 161117 |
|       |      | 1100 | 101103 |

| Nitrogen   | (N)  |
|------------|------|
| Phosphorus | (P)  |
| Potassium  | (K)  |
| Calcium    | (Ca) |
| Magnesium  | (Mg) |
| Sulfur     | (S)  |

| Iron       | (Fe) |
|------------|------|
| Manganese  | (Mn) |
| Copper     | (Cu) |
| Zinc       | (Zn) |
| Boron      | (B)  |
| Molybdenum | (Mo) |

#### Not generally considered essential nutrients

| Sodium   | (Na  |
|----------|------|
| Chloride | (CI) |
| Silicon  | (Si) |
| Nickel   | (Ni) |

(Ni)

# Typical leaf nutrient concentrations (% of leaf dry weight)

| Fertilizer nutrients |      | Nutrient % |                       |
|----------------------|------|------------|-----------------------|
| Nitrogen             | (N)  | 4.0%       | <b>Macronutrients</b> |
| Phosphorus           | (P)  | 0.5%       |                       |
| Potassium            | (K)  | 4.0%       |                       |
| Calcium              | (Ca) | 1.0%       |                       |
| Magnesium            | (Mg) | 0.5%       |                       |
| Sulfur               | (S)  | 0.5%       |                       |
|                      |      |            |                       |
| Iron                 | (Fe) | 0.0200%    | Micronutrients        |
| Manganese            | (Mn) | 0.0200%    |                       |
| Copper               | (Cu) | 0.0010%    |                       |
| Zinc                 | (Zn) | 0.0030%    |                       |
| Boron                | (B)  | 0.0060%    |                       |
| Molybdenum           | (Mo) | 0.0001%    |                       |

#### Nutrients come from multiple places



## ppm versus %

```
1 ppm (part per million)
     = 1/1,000,000
     = liquids: 1 mg/L (milligrams/liter) = 1 g/m<sup>3</sup>
     = solids: 1 mg/kg (milligrams/kilogram)
1% (per cent)
     = 1/100
```

= 10,000 ppm

# Examples of greenhouse water results from lab

| Greenhouse                          | Well #1 | Well #2 | Target ranges |     |
|-------------------------------------|---------|---------|---------------|-----|
|                                     |         |         | Min           | Max |
| рН                                  | 7.6     | 7.1     | 5.0           | 7.0 |
| Alkalinity (ppm CaCO <sub>3</sub> ) | 35      | 242     | 40            | 120 |
| EC (mS/cm)                          | 0.11    | 1.0     | 0.0           | 1.0 |
| NO3-N (ppm)                         | 0.9     | 0.0     | 0             | 10  |
| P (ppm)                             | <0.1    | 0.3     | 0             | 20  |
| K (ppm)                             | 2       | 17      | 0             | 150 |
| Ca (ppm)                            | 4.1     | 167     | 0             | 150 |
| Mg (ppm)                            | 2.3     | 8       | 0             | 75  |
| SO4-S (ppm)                         | 11      | 180     | 0             | 120 |
| Fe (ppm)                            | <0.1    | 0.0     | 0.00          | 2.0 |
| B (ppm)                             | 0.001   | 0.1     | 0.05          | 5.0 |
| Na (ppm)                            | 15      | 28      | 0             | 100 |
| Cl (ppm)                            | 5.7     | 57      | 0             | 70  |

# Effect of nutrient supply on plant growth



**Nutrient concentration** 

#### Nutrient deficiencies and toxicities

- Deficiency or a toxicity results from too little or too much nutrient for healthy growth
- Deficiencies can occur from:
  - Low fertilizer
  - Excessive leaching
  - Poor root health
- Toxicities can occur from:
  - Essential elements
  - Other contaminants (e.g. Al, Na, pesticides)

#### Nutrient deficiencies and toxicities

- Symptoms can vary:
  - Mobility of the nutrient in the plant
  - How nutrient is used in plant metabolism and growth

See <a href="http://www.ces.ncsu.edu/depts/hort/floriculture/def/">http://www.ces.ncsu.edu/depts/hort/floriculture/def/</a> for deficiency symptoms of floriculture crops from NC State University

Online extension services www.e-GRO.com

# We measure nutrients as total salt concentration

 Electrical conductivity (EC) in mS/cm, or Total Dissolved Solids (TDS) in ppm

```
• 1 mS/cm = 1 dS/m = 100 mS/m
= 1 mmho/cm = 1000 microS/cm
```

 1 mS/cm of EC = approx. 700 ppm TDS (but this varies between meters)

# In greenhouse production, we mainly use EC units

- You need an EC meter to measure
  - EC of irrigation water (is the salt/contaminant level changing?)
  - EC of the substrate (are nutrients deficient or salts too high?)
  - EC of fertilizer solution (is the injector calibrated, are you supplying the right amount of water-soluble nutrients?)

## Interpreting EC in the substrate

- You can test substrate-EC using a plug squeeze, saturated paste, 1 soil: 1.5 or 2 water, or pour-through method
- Target substrate-EC depends on the test, because each test differs in how much the sample is diluted
- With a pour-through (on-site test), a typical range is
  - 1.0 to 2.5 mS/cm for young plants
- With a saturated paste extract (on-site or lab test), a typical range is
  - 0.75 to 1.9 mS/cm for young plants

#### Balance nutrient level (EC) in the pot

#### Add nutrients

- Irrigation water
- Water-soluble fertilizer
- Top-dress fertilizer



#### Subtract nutrients

- Uptake by plant
- Salt layer at top of medium
- Leaching

#### Starting nutrients

- Media components
- Pre-plant charge

#### High EC can happen in two ways...

#### Add nutrients

Nutrient supply from the fertilizer or water is high

#### Subtract nutrients

Nutrient uptake by the plant or leaching is low

#### Starting nutrients

Initial nutrient charge is high

## High EC can result in root rot



# High EC can result in hard crispy or leathery leaves, stunting, chlorosis or necrosis



Leathery leaves, chlorosis and necrosis of older leaves



Aborted tips, uneven germination in impatiens plugs

#### Low EC can happen in two ways...



Nutrient supply in the fertilizer and water is low

#### **Subtract nutrients**

Plant uptake of nutrients or leaching is high

#### Starting nutrients

Initial nutrient charge is low

## Low EC chlorosis and stunting



25 ppm N

150 ppm N

## Interpreting EC: irrigation method

How may substrate-EC change if you switch from overhead sprinkler irrigation to...

a) Sub-irrigation (ebb and flow, flood floor)

b) Drip irrigation



## Take home message

Provide all the essential nutrients in a moderate amount

Use electrical conductivity or total dissolved solids as an on-site test

 Use complete nutrient analysis at a lab when problems arise

## pH of the growing media ("substrate-pH") affects...

Nutrient solubility

Uptake by roots

- Plant health
  - Too much = toxicity
  - Too little = deficiency



#### J. Peterson

#### Effects of pH on iron solubility





pH 4
Highly soluble
Fe<sup>3+</sup>, Fe<sup>2+</sup>

pH 7
Highly insoluble
Fe(OH)<sub>3</sub>

#### Iron solubility

Synthetic chelates

 FeSO<sub>4</sub> and Fe-EDTA used on a continual basis

 Fe-DTPA and Fe-EDDHA used to correct iron deficiency



#### Iron/manganese deficiency at high pH





- Chlorosis in young leaves, often interveinal
- Low mobility in the plant
- Occurs at pH > 6.4 for sensitive species (petunia, calibrachoa)
- Common problem, especially with low EC

#### Iron/manganese toxicity at low pH





- Micronutrients accumulate in older tissue
- Necrosis, "bronze specking"
- Less common, occurs in iron-efficient crops

## Many factors affect substrate-pH



Low fertilizer



Nitrate NO<sub>3</sub>



**Petunia** 



Geranium





Ammonium NH<sub>4</sub>



BASIC Factors (Raise pH)



ACID Factors (Lower pH)

# Leaching with clear water washes away salts and raises pH



# Adding fertilizer will lower pH, especially calcium (Ca<sup>++</sup>)



### EC effects: Low salts raise substrate-pH



#### Water quality: Solution-pH

- Can be measured with a pH meter
  - Neutral = 7
  - Acid < 7</li>
  - Basic > 7
- Affects solubility of nutrients in the fertilizer solution
- Has little effect on substrate-pH



## Water quality: Alkalinity effects on substrate-pH

- Bicarbonates/carbonates
  - $HCO_3^-$  and  $CO_3^{2-}$
- Alkalinity is <u>NOT</u> measured with a pH meter

- Like applying limestone at each irrigation
  - Increases substrate-pH



## Different alkalinity units

| Milli-Equivalents alkalinity (mEq/L) | ppm alkalinity<br>(CaCO <sub>3</sub> or CCE) | ppm bicarbonate<br>(HCO <sub>3</sub> -) |
|--------------------------------------|----------------------------------------------|-----------------------------------------|
| 1                                    | 50                                           | 61                                      |
| 2                                    | 100                                          | 122                                     |
| 3                                    | 150                                          | 183                                     |
| 4                                    | 200                                          | 244                                     |
| 5                                    | 250                                          | 305                                     |

#### How much acid to control alkalinity?

 Online <u>AlkCalc</u> from the University of New Hampshire

- Sulfuric (adds S)
- Phosphoric (adds P)
- Nitric (adds N)





Acidify to water pH
 of ~ 6, or 2 mEq/L of
 alkalinity

### N forms help determine pH effect

20-10-20

#### **Guaranteed Analysis**

FOR CONTINUOUS LIQUID FEEDING PROGRAMS

 Total Nitrogen (N)
 20%

 8.0% Ammoniacal Nitrogen
 12.0% Nitrate Nitrogen

 Available Phosphate (P2O5)
 10%

 Soluble Potash (K2O)
 20%

 Boron (B)
 0.025%

 Copper (Cu)
 0.025%

 Iron (Fe)
 0.100%

 Manganese (Mn)
 0.050%

 Molybdenum (Mo)
 0.010%

 Zinc (Zn)
 0.050%

**Derived from:** ammonium nitrate, ammonium phosphate, boric acid, copper EDTA, iron EDTA, manganese EDTA, potassium nitrate, sodium molybdate, and zinc EDTA.

8% ammonium-N 20% total-N

= 40% ammonium-N

12% nitrate-N 20% total-N

= 60% nitrate-N

ontial acidity 195 lbs. Calcium Carbonata Equivalent per Ton

Total Nitrogen (N)

8.0% Ammoniacal Nitrogen 12.0% Nitrate Nitrogen

12.0 /0 Taltiate Taltinge

EC Chart (in mS/cm)

| ppm N | 50 ppm N | 100 ppm N | 200 ppm N | 300 ppm N | 400 ppm N |
|-------|----------|-----------|-----------|-----------|-----------|
| EC    | 0.32     | 0.64      | 1.28      | 1.92      | 2.56      |

### What is the "pH personality" of your crops?

|                           | Sensitive to<br>low pH<br>(iron toxicity) | Tolerant of<br>wider pH range<br>(iron intermediate) | Sensitive to<br>high pH<br>(iron deficiency) |
|---------------------------|-------------------------------------------|------------------------------------------------------|----------------------------------------------|
| Tend to<br>lower pH       | Geranium                                  | Coleus                                               |                                              |
| Intermediate<br>pH effect | Marigold<br>New Guinea Imp.<br>Verbena    | Dusty Miller<br>Impatiens<br>Salvia                  | Snapdragon                                   |
| Tend to raise pH          | Lisianthus<br>Pentas                      |                                                      | Petunia<br>Pansy<br>Vinca<br>Zinnia          |

#### Correcting low and high pH problems





- First check substrate-pH and EC and root health
- Trial on a small number of plants before treating the whole crop

#### Options to correct high substrate-pH

- 1. Make sure substrate-EC is not low. Sometimes high pH occurs because the substrate is leached out. If EC is low, add fertilizer.
- 2. Ammonium fertilizer and low water alkalinity. Lower pH over 1-2 weeks. Have ammonium nitrate or ammonium sulfate on hand.
- 3. Correct micronutrient deficiencies. Mask symptoms with an iron drench at 20 ppm iron. Have iron-EDDHA (Sprint 138 or similar) on hand.
- 4. In extreme cases, consider acid drenches. Ferrous iron sulfate drenches at 120 g/100 L rapidly reduce pH, but foliar phytotoxicity is likely.

#### Tips on drenching with iron chelates

- 33 grams/100 Liters
  - Iron-EDDHA 20 ppm iron (best)
  - Iron-DTPA 37 ppm iron (OK)

Apply with generous leaching. Immediately wash foliage.

Do not apply to iron-efficient plants.

#### Phytotoxicity from iron drenching



- Drenched with 40ppm of Fe-EDDHA
- Brown speckling and necrosis, usually older leaves

#### Options to correct low substrate-pH

- 1. Flowable lime: Effective, messy to apply, may not be available in your area. Has residual activity
- 2. Potassium bicarbonate or carbonate: Effective, repeat applications often required, can raise EC
- 3. Nitrate-based fertilizer: Longer-term, helps prevent low-pH problems, not suitable for rapid increase in pH. Most effective in combination with alkaline irrigation water.
- 4. Hydrated lime in solution or top-dress: Can be inconsistent. Easy to source and low cost.

#### Tips for drenching potassium bicarbonate

- Delivered through emitters or ebb and flood.
- Apply in cool weather, immediately rinse foliage.
- One day after application, apply a basic fertilizer (high nitrate) with moderate leaching to wash out salts and to reestablish nutrient balance.



Leaf distortion from potassium bicarbonate residue

#### Nutrient management for container crops



Ryan Dickson ryand@uark.edu

