Fertilizer and substrate management for container crops

Ryan Dickson
ryand@uark.edu
Outline

• Supplying and managing nutrients in container substrates

• Controlling pH and correcting pH problems

• Updates on new substrates and management practices
How much of the crop is made of nutrients?
How much of the crop is made of nutrients?

- **Whole plant**
 - 90% water
 - 10% solid

- Essential nutrients:
 - Carbon, oxygen, hydrogen
How much of the crop is made of nutrients?

Fertilizer nutrients = approx. 1% of the plant

Whole plant

90% water
10% solid

Solid parts of the plant

90% carbon, oxygen, hydrogen
10% essential nutrients
Fertilizer nutrients
- Nitrogen (N)
- Phosphorus (P)
- Potassium (K)
- Calcium (Ca)
- Magnesium (Mg)
- Sulfur (S)
- Iron (Fe)
- Manganese (Mn)
- Copper (Cu)
- Zinc (Zn)
- Boron (B)
- Molybdenum (Mo)

Not generally considered essential nutrients
- Sodium (Na)
- Chloride (Cl)
- Silicon (Si)
- Nickel (Ni)
Typical leaf nutrient concentrations (% of leaf dry weight)

<table>
<thead>
<tr>
<th>Fertilizer nutrients</th>
<th>Nutrient %</th>
<th>Macronutrients</th>
<th>Micronutrients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen (N)</td>
<td>4.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus (P)</td>
<td>0.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium (K)</td>
<td>4.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium (Ca)</td>
<td>1.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium (Mg)</td>
<td>0.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur (S)</td>
<td>0.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron (Fe)</td>
<td>0.0200%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese (Mn)</td>
<td>0.0200%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>0.0010%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc (Zn)</td>
<td>0.0030%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boron (B)</td>
<td>0.0060%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdenum (Mo)</td>
<td>0.0001%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nutrients come from multiple places

- Water-soluble fertilizers
- Irrigation Water
- Lime Reactive Residual
- Pre-plant fertilizer
- Substrate
ppm versus %

1 ppm (part per million)

= 1/1,000,000

= liquids: 1 mg/L (milligrams/liter) = 1 g/m³

= solids: 1 mg/kg (milligrams/kilogram)

1% (per cent)

= 1/100

= 10,000 ppm
Examples of greenhouse water results from lab

<table>
<thead>
<tr>
<th>Greenhouse</th>
<th>Well #1</th>
<th>Well #2</th>
<th>Target ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>pH</td>
<td>7.6</td>
<td>7.1</td>
<td>5.0</td>
</tr>
<tr>
<td>Alkalinity (ppm CaCO₃)</td>
<td>35</td>
<td>242</td>
<td>40</td>
</tr>
<tr>
<td>EC (mS/cm)</td>
<td>0.11</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>NO3-N (ppm)</td>
<td>0.9</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>P (ppm)</td>
<td><0.1</td>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>K (ppm)</td>
<td>2</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>Ca (ppm)</td>
<td>4.1</td>
<td>167</td>
<td>0</td>
</tr>
<tr>
<td>Mg (ppm)</td>
<td>2.3</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>SO4-S (ppm)</td>
<td>11</td>
<td>180</td>
<td>0</td>
</tr>
<tr>
<td>Fe (ppm)</td>
<td><0.1</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>B (ppm)</td>
<td>0.001</td>
<td>0.1</td>
<td>0.05</td>
</tr>
<tr>
<td>Na (ppm)</td>
<td>15</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>Cl (ppm)</td>
<td>5.7</td>
<td>57</td>
<td>0</td>
</tr>
</tbody>
</table>
Effect of nutrient supply on plant growth

Yield

Nutrient concentration

- deficiency
- adequate
- toxicity
Nutrient deficiencies and toxicities

- Deficiency or a toxicity results from too little or too much nutrient for healthy growth

- Deficiencies can occur from:
 - Low fertilizer
 - Excessive leaching
 - Poor root health

- Toxicities can occur from:
 - Essential elements
 - Other contaminants (e.g. Al, Na, pesticides)
Nutrient deficiencies and toxicities

• Symptoms can vary:
 - Mobility of the nutrient in the plant
 - How nutrient is used in plant metabolism and growth

See http://www.ces.ncsu.edu/depts/hort/floriculture/def/ for deficiency symptoms of floriculture crops from NC State University

Online extension services www.e-GRO.com
We measure nutrients as total salt concentration

- Electrical conductivity (EC) in mS/cm, or Total Dissolved Solids (TDS) in ppm

- \(1 \text{ mS/cm} = 1 \text{ dS/m} = 100 \text{ mS/m} = 1 \text{ mmho/cm} = 1000 \text{ microS/cm}\)

- \(1 \text{ mS/cm} \text{ of EC} \approx 700 \text{ ppm TDS} \) (but this varies between meters)
In greenhouse production, we mainly use EC units

- You need an EC meter to measure
 - EC of irrigation water (is the salt/contaminant level changing?)
 - EC of the substrate (are nutrients deficient or salts too high?)
 - EC of fertilizer solution (is the injector calibrated, are you supplying the right amount of water-soluble nutrients?)
Interpreting EC in the substrate

- You can test substrate-EC using a plug squeeze, saturated paste, 1 soil: 1.5 or 2 water, or pour-through method.

- Target substrate-EC depends on the test, because each test differs in how much the sample is diluted.

- With a pour-through (on-site test), a typical range is 1.0 to 2.5 mS/cm for young plants.

- With a saturated paste extract (on-site or lab test), a typical range is 0.75 to 1.9 mS/cm for young plants.
Balance nutrient level (EC) in the pot

Add nutrients
- Irrigation water
- Water-soluble fertilizer
- Top-dress fertilizer

Subtract nutrients
- Uptake by plant
- Salt layer at top of medium
- Leaching

Starting nutrients
- Media components
- Pre-plant charge
High EC can happen in two ways...

Add nutrients
Nutrient supply from the fertilizer or water is high

Starting nutrients
Initial nutrient charge is high

Subtract nutrients
Nutrient uptake by the plant or leaching is low
High EC can result in root rot
High EC can result in hard crispy or leathery leaves, stunting, chlorosis or necrosis.

Leathery leaves, chlorosis and necrosis of older leaves

Aborted tips, uneven germination in impatiens plugs
Low EC can happen in two ways...

Add nutrients
Nutrient supply in the fertilizer and water is low

Subtract nutrients
Plant uptake of nutrients or leaching is high

Starting nutrients
Initial nutrient charge is low
Low EC chlorosis and stunting

25 ppm N 150 ppm N
Interpreting EC: irrigation method

How may substrate-EC change if you switch from overhead sprinkler irrigation to...

a) Sub-irrigation (ebb and flow, flood floor)

b) Drip irrigation
Take home message

• Provide all the essential nutrients in a moderate amount

• Use electrical conductivity or total dissolved solids as an on-site test

• Use complete nutrient analysis at a lab when problems arise
pH of the growing media ("substrate-pH") affects...

- Nutrient solubility
- Uptake by roots
- Plant health
 - Too much = toxicity
 - Too little = deficiency

J. Peterson
Effects of pH on iron solubility

- **pH 4**
 - Highly soluble
 - \(\text{Fe}^{3+}, \text{Fe}^{2+} \)

- **pH 7**
 - Highly insoluble
 - \(\text{Fe(OH)}_3 \)
Iron solubility

• Synthetic chelates

• FeSO$_4$ and Fe-EDTA used on a continual basis

• Fe-DTPA and Fe-EDDHA used to correct iron deficiency

Norvell, 1991
Iron/manganese deficiency at high pH

- Chlorosis in young leaves, often interveinal
- Low mobility in the plant
- Occurs at pH > 6.4 for sensitive species (petunia, calibrachoa)
- Common problem, especially with low EC
Iron/manganese toxicity at low pH

- Micronutrients accumulate in older tissue
- Necrosis, “bronze specking”
- Less common, occurs in iron-efficient crops
Many factors affect substrate-pH

BASIC Factors (Raise pH):
- Lime
- Low fertilizer
- Alkalinity

ACID Factors (Lower pH):
- Nitrate NO_3^-
- High fertilizer
- Ammonium NH_4^+

Species:
- Petunia
- Geranium

Acid balance
Leaching with clear water washes away salts and raises pH
Adding fertilizer will lower pH, especially calcium (Ca++)
EC effects: Low salts raise substrate-pH
Water quality: Solution-pH

- Can be measured with a pH meter
 - Neutral = 7
 - Acid < 7
 - Basic > 7

- Affects solubility of nutrients in the fertilizer solution

- Has little effect on substrate-pH
Water quality: Alkalinity effects on substrate-pH

- Bicarbonates/carbonates
 - HCO_3^- and CO_3^{2-}

- Alkalinity is **NOT** measured with a pH meter

- Like applying limestone at each irrigation
 - Increases substrate-pH
Different alkalinity units

<table>
<thead>
<tr>
<th>Milli-Equivalents alkalinity (mEq/L)</th>
<th>ppm alkalinity (CaCO$_3$ or CCE)</th>
<th>ppm bicarbonate (HCO$_3^-$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>61</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>122</td>
</tr>
<tr>
<td>3</td>
<td>150</td>
<td>183</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>244</td>
</tr>
<tr>
<td>5</td>
<td>250</td>
<td>305</td>
</tr>
</tbody>
</table>
How much acid to control alkalinity?

- Online AlkCalc from the University of New Hampshire
- Sulfuric (adds S)
- Phosphoric (adds P)
- Nitric (adds N)

- Acidify to water pH of ~ 6, or 2 mEq/L of alkalinity
N forms help determine pH effect

\[
\begin{align*}
8\% \text{ ammonium-N} & \quad = \quad 40\% \text{ ammonium-N} \\
20\% \text{ total-N} & \\
\hline
12\% \text{ nitrate-N} & \quad = \quad 60\% \text{ nitrate-N} \\
20\% \text{ total-N} &
\end{align*}
\]

20-10-20

Guaranteed Analysis
FOR CONTINUOUS LIQUID FEEDING PROGRAMS

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Nitrogen (N)</td>
<td>20%</td>
</tr>
<tr>
<td>8.0% Ammoniacal Nitrogen</td>
<td></td>
</tr>
<tr>
<td>12.0% Nitrate Nitrogen</td>
<td></td>
</tr>
<tr>
<td>Available Phosphate (P₂O₅)</td>
<td>10%</td>
</tr>
<tr>
<td>Soluble Potash (K₂O)</td>
<td>20%</td>
</tr>
<tr>
<td>Boron (B)</td>
<td>0.025%</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>0.025%</td>
</tr>
<tr>
<td>Iron (Fe)</td>
<td>0.100%</td>
</tr>
<tr>
<td>Manganese (Mn)</td>
<td>0.050%</td>
</tr>
<tr>
<td>Molybdenum (Mo)</td>
<td>0.010%</td>
</tr>
<tr>
<td>Zinc (Zn)</td>
<td>0.050%</td>
</tr>
</tbody>
</table>

Derived from: ammonium nitrate, ammonium phosphate, boric acid, copper EDTA, iron EDTA, manganese EDTA, potassium nitrate, sodium molybdate, and zinc EDTA.

Potential acidity: 125 lbs. Calcium Carbonate Equivalent per Ton.

Total Nitrogen (N) ... 20%

8.0% Ammoniacal Nitrogen
12.0% Nitrate Nitrogen

EC Chart (in mS/cm)

<table>
<thead>
<tr>
<th>ppm N</th>
<th>50 ppm N</th>
<th>100 ppm N</th>
<th>200 ppm N</th>
<th>300 ppm N</th>
<th>400 ppm N</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>0.32</td>
<td>0.64</td>
<td>1.28</td>
<td>1.92</td>
<td>2.56</td>
</tr>
</tbody>
</table>
What is the “pH personality” of your crops?

<table>
<thead>
<tr>
<th>Tend to lower pH</th>
<th>Sensitive to low pH (iron toxicity)</th>
<th>Tolerant of wider pH range (iron intermediate)</th>
<th>Sensitive to high pH (iron deficiency)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geranium</td>
<td>Coleus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate pH effect</td>
<td>Marigold New Guinea Imp. Verbena</td>
<td>Dusty Miller Impatiens Salvia</td>
<td>Snapdragon</td>
</tr>
<tr>
<td>Tend to raise pH</td>
<td>Lisianthus Pentas</td>
<td></td>
<td>Petunia Pansy Vinca Zinnia</td>
</tr>
</tbody>
</table>
Correcting low and high pH problems

- First check substrate-pH and EC and root health
- Trial on a small number of plants before treating the whole crop
Options to correct high substrate-pH

1. **Make sure substrate-EC is not low.** Sometimes high pH occurs because the substrate is leached out. If EC is low, add fertilizer.

2. **Ammonium fertilizer and low water alkalinity.** Lower pH over 1-2 weeks. Have ammonium nitrate or ammonium sulfate on hand.

3. **Correct micronutrient deficiencies.** Mask symptoms with an iron drench at 20 ppm iron. Have iron-EDDHA (Sprint 138 or similar) on hand.

4. **In extreme cases, consider acid drenches.** Ferrous iron sulfate drenches at 120 g/100 L rapidly reduce pH, but foliar phytotoxicity is likely.
Tips on drenching with iron chelates

- 33 grams/100 Liters
 - Iron-EDDHA 20 ppm iron (best)
 - Iron-DTPA 37 ppm iron (OK)

- Apply with generous leaching. Immediately wash foliage.

- Do not apply to iron-efficient plants.
Phytotoxicity from iron drenching

- Drenched with 40ppm of Fe-EDDHA
- Brown speckling and necrosis, usually older leaves
Options to correct low substrate-pH

1. **Flowable lime**: Effective, messy to apply, may not be available in your area. Has residual activity.

2. **Potassium bicarbonate or carbonate**: Effective, repeat applications often required, can raise EC.

3. **Nitrate-based fertilizer**: Longer-term, helps prevent low-pH problems, not suitable for rapid increase in pH. Most effective in combination with alkaline irrigation water.

4. **Hydrated lime in solution or top-dress**: Can be inconsistent. Easy to source and low cost.
Tips for drenching potassium bicarbonate

• Delivered through emitters or ebb and flood.

• Apply in cool weather, immediately rinse foliage.

• One day after application, apply a basic fertilizer (high nitrate) with moderate leaching to wash out salts and to reestablish nutrient balance.
Nutrient management for container crops

Ryan Dickson
ryand@uark.edu