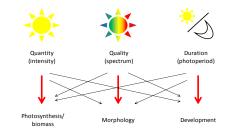
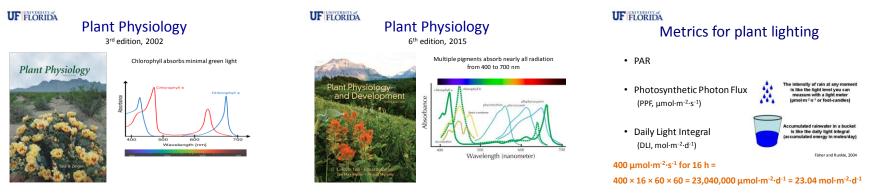
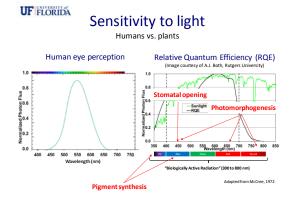

Yield Responses to Supplemental Lighting



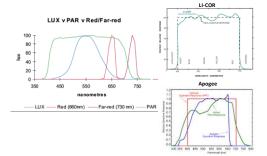
UF FLORIDA


Plant use light from within the visible spectrum for **photosynthesis and growth**. Photosynthetically Active Radiation (PAR, 400 to 700 nm)

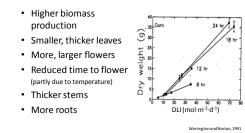
Light for plant growth and development



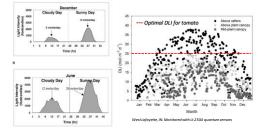
The different properties of light interact to control growth and development AtterRunkle, 2015



Note: Lux and footcandle units should be avoided


After Bugbee, 2015

UF FLORIDA The importance of using the right sensor


UF FLORIDA Plant responses to higher DLI

"A 1% reduction in light will reduce production (harvestable yield) by 1%."

UF FLORIDA

Affected by photoperiod × PPF

UF FLORIDA

Supplemental light (SL)

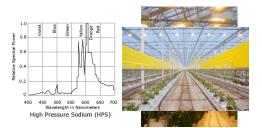
- Important PAR source in Northern latitudes
- Additional DLI needed to enhance canopy photosynthesis and crop growth

Frequently perceived as too expensive!

SL for greenhouse-vegetable production

- 1. Installation and lamp types
- 2. Light intensity and photoperiod for specific crops
- 3. Crop management
- 4. Spectral composition

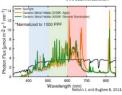
Installation


- Overhead lamps
- 3 ft above support wiring (over the canopy)
- ~100 to 150 μmol·m⁻²·s⁻¹
- Above plant rows
- (different from Europe)
- Fewer but higher wattage (up to 1000 W) fixtures
- Turned off:
 - Solar radiation exceeds 450-600 $\mu mol \cdot m^{\text{-2}} \cdot s^{\text{-1}}$
- DLI of 20-25 mol·m⁻²·d⁻¹is reached
- Consider heat contribution from SL

Note: overhead = top-lighting

Lamp types

Current standard: High-pressure sodium (HPS) lamps



Note: overhead = top-lighting

UF FLORIDA

- Metal halide:
- Their energy efficiency is not as high as HPS lamps (1.5 vs. 1.7 μmol·J⁻¹)
- Their useful bulb life is about half as long as HPS lamps
- "Balanced" spectrum

Mutual shading between/within foliar canopies Common issue with overhead SL

Shaded leaves

Light-Emitting Diodes (LEDs)

Alternative sources for plant lighting

- Photon-emitting surfaces are not hot
- Can be placed close to plant surfaces
- Efficiency is improving rapidly
- Potential for advances in light distribution
- Wavelength selectable

Intracanopy LED (ICL-LED) lighting Same concept as interlighting

Sweet pepper

Eggplant

UF FLORIDA

Overhead LED lighting

It all relates back to the average DLI

(received by plants)

- Specific recommendations for SL depend on the crop _____
- Lamp and electrical cost
- Heating requirements
- Most vegetables are dayneutral plants
 - [i.e., no particular photoperiod hastens or delays flowering (and thus, fruit production)]

UF FLORIDA

Lettuce

- Production:
 PPF: 250 μmol·m⁻²·s⁻¹ (50 to 150 μmol·m²·s⁻¹ from SL)
- Photoperiod: 16 h·d⁻¹
- Photopenou. 16 h/u
- DLI: ~14 mol·m⁻²·d⁻¹

Extending the photoperiod from 16 to 24 h can increase plant biomass by 20% and reduce production cycle by 7 days

SL can increase tip-burn incidence

UF FLORIDA

Sweet pepper

- Production:
- PPF: 150 to 175 μmol·m⁻²·s⁻¹ from SL
- Photoperiod: 16 to 20 h·d-1
- DLI: ≥ 12 mol·m⁻²·d⁻¹

Continuous lighting (24 h) does not improve growth/yield compared to a 20-h photoperiod

Cucumber

- Production:
- PPF: 150 to 300 µmol·m⁻²·s⁻¹ from SL
- Photoperiod: 18 to 20 h·d⁻¹
- DLI: up to 30 mol·m⁻²·d⁻¹

A dark period ≥4 h should be provided

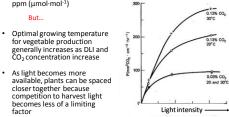
UF FLORIDA

Tomato

- Propagation:
- PPF: 180 to 200 μmol·m⁻²·s⁻¹ from SL
- Photoperiod: 18 to 20 h·d⁻¹
- DLI: ~16 mol·m-2·d-1
- Production:
- PPF: 150 to 300 μmol·m⁻²·s⁻¹ from SL
- Photoperiod: 16 to 18 h·d⁻¹
- DLI: 25 to 30 mol·m⁻²·d⁻¹

Physiological injuries can be cause by long photoperiods (>16 h) during production

UF FLORIDA


Crop Management

Other environmental parameters need to be considered

• To optimize use of SL, CO₂ is often enriched to 700-1000 ppm (µmol·mol⁻¹)

for vegetable production

But...

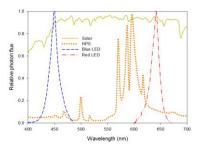
3-way environmental interactions

UF FLORIDA

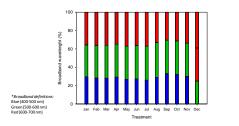
Cultural practices

Leaf pruning (removal) and intercropping

- · Usually done with high plant density - (12 to 15 leaves are kept)
- · A similar strategy is used with cucumber (highest fruit quality and greatest shelf life)
- Intercropping can optimize space and light utilization: New plants are planted as older plants mature.
 - Bottom leaves of the old crop are pruned and both crops share production area for a period of 6-8 weeks.


UF FLORIDA

Spectral composition

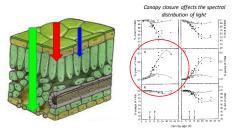

importance of wavebands

UF FLORIDA

Broadband percentage of sunlight's blue, green, red (BGR) at noon

The BGR percentages of midday solar PPF are similar across seasons

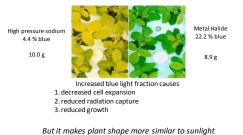
UF FLORIDA


Wavebands within PAR

- Red most efficient waveband at driving photosynthesis
 - Promotes leaf expansion = increases light capture
- · Blue waveband typically adds value
- Second-most efficient driving photosynthesis
- Reduces stem elongation/leaf expansion (?) = reducing light interception, which possibly reduces whole-plant Ps
- Regulates flower induction (?)
- Phototropic growth movements
- Regulates stomatal aperture (gas-exchange)
- Important for chlorophyll synthesis

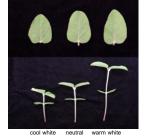
This is why most commercial LED arrays are red- and blue-biased

Green penetrates deeper into the leaf

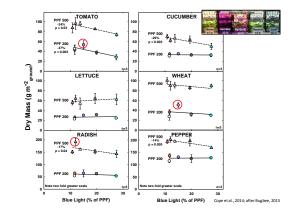

(than red or blue)

Sun et al., 1998 Terashima et al., 2009

Frantz et al., 2000; after Bugbee, 2015


UF FLORIDA Plant responses to blue light

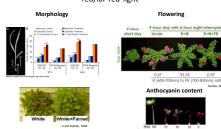



Dougher and Bugbee, 2002; after Bugbee, 2015

UF FLORIDA

Phosphor-coating effect

Manipulating plant characteristics I blue light


100R 85R:15B 70R:30B

29H

Potential to improve quality (phytochemical content) of crops, and control morphology and/or flowering

Potential to control morphology (stem elongation/leaf expansion), quality, and for photoperiodic control

UF FLORIDA

Early-generation

commercial LED arrays

- Because initial capital investment is high, present commercial LED arrays tend to have:
 - Limited spectral choices
 - Fixed-color ratios
 - Modest output intensities (low LED density)
- Passive heat sinking
- Limited light-distribution geometry
- Limited capability to determine optimum light recipes for specific crops

(Re)-discovering the solar spectrum

From previous and ongoing sole-source lighting research

- Adding green to overhead red + blue light promotes growth
- Adding far-red
 - Promotes stem elongation
 - Promotes flowering in some photoperiodic classes
 - Prevents intumescence growth in some species

- Adding UV o Prevents intumescence
 - Promotes pigment and phytochemical accumulations
- Are white LEDs the answer?
 - Are blue LEDs + phosphor
 - Electrically inefficient (<50% as efficient as blue LEDs)
- Lack FR, UV

UF FLORIDA

Alternative to greenhouse SL Improvements in glazing technology

Effect of direct and diffuse light in the greenhouse

Diffuse light penetrates deeper into plant canopies than direct light

Summary

- Typical PPF = 100 to 150 μmol·m⁻²·s⁻¹
- Typical photoperiod = 8 to 16 h·d⁻¹
- Typical DLIs from SL = 2.9 to 8.6 mol·m⁻²·d⁻¹
 - 20 mol·m²·d⁻¹ is a general target DLI from most fruiting vegetables
 10 mol·m²·d⁻¹ is the minimum acceptable DLI for many vegetable crops
- Benefit of SL is greatest when sunlight intensity is low
- Consider alternative technologies

cgomezv@ufl.edu

