Yield Response to CO₂ Enrichment

Tom Manning New Jersey Agricultural Experiment Station

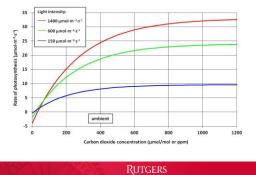
For photos, figures and data: Dr. A.J. Both – Rutgers University Dr. Bruce Bugbee – Utah State University Dr. Jonathan Franz – USDA

Why CO₂ Enrichment?

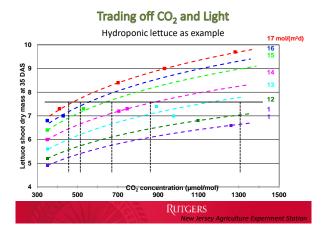
- CO₂ is an essential plant nutrient
- ✤ CO₂ can become depleted in the greenhouse
- Supplemental lighting requires adequate CO₂ levels
- CO₂ enrichment can enhance plant growth and increase yields (up to 25% per year)
- In some ornamental crops, CO₂ enrichment can improve plant quality

Rutgers

CO₂ Concentration

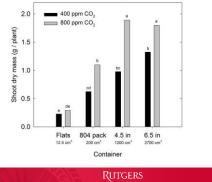

- Ambient CO₂ concentration is ~400 ppm (2016)
- CO₂ levels in a closed greenhouse can go below 200 ppm
- CO₂ concentrations above 10,000 ppm are harmful to humans
- Levels as low as 1,000 ppm may affect humans (Federal limit for occupational is an average of 5,000 ppm for eight hours)

RUTGERS


Plant Response to CO₂ Enrichment

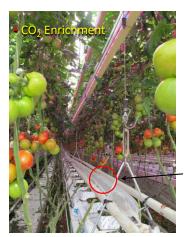
- CO₂ concentrations above 1,200 ppm don't increase plant growth
- Increased CO₂ levels have a diminishing effect (e.g. an increase from 400 to 500 ppm has more of an effect than from 1,000 to 1,100 ppm)
- Plants can become acclimated to CO₂ enrichment

Ruttgers



Influence of CO₂ Concentration and Light Intensity on Photosynthesis

Yield Response to CO₂ Enrichment Dry mass of pansy plants after six weeks of growth in different containers


- Liquid CO₂
 - Liquid CO₂ occupies less volume but requires refrigeration
 - Liquid is vaporized before release in the greenhouse
- Compressed CO₂
- CO₂ burners
 - Produce heat
 - Potential fire hazard
 - May release contaminants (ethylene and CO)

RUTGERS

CO₂ Distribution

- Liquid and Compressed CO₂ is typically distributed in inflatable polyethylene tubes toward the bottom of the plant canopy
- CO₂ burners are a point source within the greenhouse, above the canopy
- ✤ CO₂ diffuses quickly and is heavier than air

Ruttgers

Inflated polytube for CO₂ distribution

• Special natural gas burners for CO₂ enrichment (unvented heater)

- These units can be a potential fire hazard
 Units must be properly adjusted to release pure CO₂ (and
 - water vapor), and avoid the production of contaminants such as ethylene, carbon monoxide

RUTGERS

Recommended CO₂ Enrichment Rates

- Approximately 50 kg/ha (45 lb/acre) per hour is recommended to maintain ambient levels (400 ppm)
- Enrichment rates of 200 to 600 kg/ha (180 to 540 lb/acre) may be required to maintain CO₂ concentrations of 1,200 (influenced by infiltration)

Rutgers

Factors Influencing CO₂ Enrichment Costs

- Method of CO₂ enrichment
- The unit cost of the CO₂ gas
- The number of hours during the day when CO₂ enrichment is used
- The air leakage rate of the greenhouse
- The amount of venting allowed during CO₂

Rutgers

Monitoring and Controlling CO₂

- ✤ CO₂ sensors
 - * Need periodic calibration for efficiency and worker safety
 - Mount in representative location close to plant canopy
 - Used to activate solenoid valves or turn burners on and off
- Computer control systems provide more flexibility and better management of CO₂ enrichment
 - Coordination with supplemental light
 - Managing ventilation
 - Let set point temperatures rise at beginning and end of light periods, delaying ventilation
- Control can be based on concentration (ppm) or flow rate (g/m²/hr)

RUTTGERS

18

Considerations Affecting CO₂ Enrichment

- ✤ Type of crop
- Ventilation requirements
- Presence of supplemental light
- Desired CO₂ concentrations
 - Maintain ambient levels
 - Enrichment
- Potential for CO₂ recovery from boilers with thermal storage
- Benefits/Disadvantages of gas burners
 - Heating needs and timing
 - Cost
 - Distribution
- Availability of computer control

RUTGERS