Water Quality for High Quality Crops

Rosa E. Raudales Associate Professor & Greenhouse Extension Specialist

rosa@uconn.edu www.greenhouse.uconn.edu

¡Se habla Español!

UCONN | COLLEGE OF AGRICULTURE, HEALTH AND NATURAL RESOURCES

Understand the risks and benefits of each water source. Know what is in your water!

Take-Home Message #1:

UCONN | COLLEGE OF AGRICULTURE, HEALTH AND NATURAL RESOURCES

salts, specific salts, dissolved

2. Microbial: good and bad, algae,

inorganic precipitates, temperature

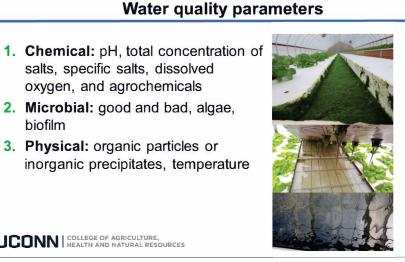
oxygen, and agrochemicals

3. Physical: organic particles or

Water sources differ in quality

High-quality sources: Municipal treated, wells, rainwater, and reverse osmosis.

Recirculated nutrient solutions


Low-quality sources: surface water

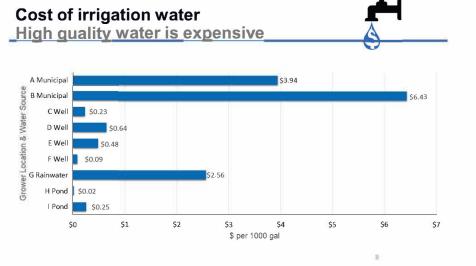
UCONN | COLLEGE OF AGRICULTURE, HEALTH AND NATURAL RESOURCES

biofilm

Water sources differ in quality & risk of problems

Low risk:

RO, rainwater, deep wells, & municipal


- Intermediate risk: Shallow wells
- Higher risk: Surface water (pond, lake, rivers) Agricultural wastewater

UCONN | COLLEGE OF AGRICULTURE, HEALTH AND NATURAL RESOURCES

Water source	Potential Risks	
Drinking water	Chemical: Chlorine (i.e. bleach) & fluoride	
Deep wells	Chemical: iron, manganese, & calcium Microbial: iron oxidizing bacteria	
Rainwater and reverse osmosis- treatment	None. Storage: microbial load or physical solids	
UCONN COLLEGE OF AGE	RICULTURE, FURAL RESOURCES	6

<u>Vater source</u>	Potential Risks		Cost of irrigation water	
Shallow wells	Chemical: pestici Microbial: plant p Physical: sedime			e s
Rainwater and reverse osmosis- treatment	None. Storage: microbia	al load or physical solids	C Well S0.23 C Well S0.64 C Well S0.64	
Recirculated water	Microbial: plant p	des, herbicides, fertilizers, PGF pathogens, algae, and biofilm s suspended solids	GRs F Well \$0.09 G Rainwater H Pond \$0.02 I Pond \$0.25	
UCONN COLLEGE OF AC	RICULTURE, ITURAL RESOURCES	Take-Home Message #2 Start with the highest quality o water possible.	\$0 \$1 \$2 \$3	¢ 00 gal

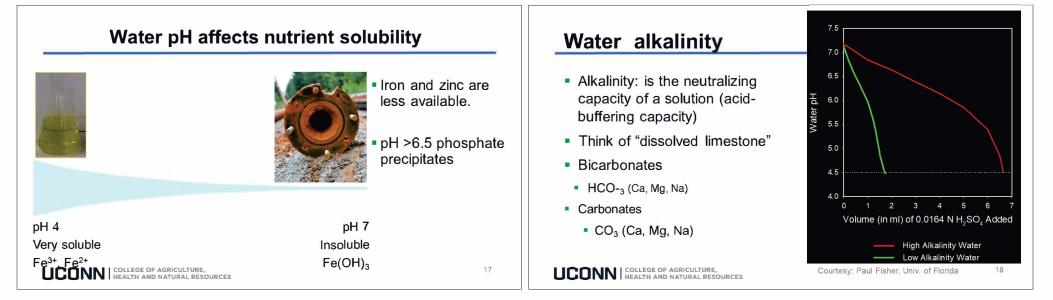
			EMW-400 : Water	r Irrigation Su	itability			
	2		Components		Results		Target Ranges	Acceptable
		—			mg/L	meq	(mg/L)	(mg/L)
Reverse Osmosis (RO) : Membr	rane filtration (<1 micron)	Test the suitability of	MAJOR CATIONS	6				
		water source for irrigation:	Potassium	к	3.73	0.10		<100
		water source for imgation.	Calcium	Ca	11.22	0.56	25 - 75	<150
		Complete nutrient analysis	Magnesium	Mg	3.23	0.27	10 - 30	<50
	RO removes all elements from	Complete nutrient analysis	Sodium	Na	40.54	1.76	0 - 20	<50
			MAJOR ANIONS					
	the solution, except boron.		Phosphate	PO4	0.71	0.02	0 100	<90
		Check:	Sulfate	SO4	18.97 41.00	0.39	0 - 120 0 - 20	<240 <140
			HCO3 Alkalinity	HCO3	41.00	0.75	0 - 20	<140
	Ducas Mana alagu alagat	✓Total salts (EC)	CO3 Alkalinity	CO3	0.00	ND		
	Pros: It's a clean sheet.		COS Aikalility	003	0.00	ND		
		✓ Individual elements	Ammonium Nitrog	enNH4-N	ND			<10
		· · ·	Nitrate Nitrogen	NO3-N	ND			<75
	Con: Expensive, specialized	Hq√	pН	pН	7.10		5.50 - 7	4-10
	and requirement register analy		Soluble Salts	EC	0.26		0.20 - 0.80	0-1.5
	and recurrent maintenance,	 Alkalinity ("dissolved") 	Total Alkalinity	CaCO3	37.60		40 - 160	0-400
	removes elements that are	limestone")						
	essential for the plant, & it can	imesione)	Iron	Fe	0.16		< 1	<4
			Manganese	Mn	0.01		< 1	<2
	be corrosive.		Boron	В	0.04		< 0.10	<0.5
			Copper	Cu	0.06		< 0.10	<0.2
Tales Illaura Massaura #2			Zinc	Zn	0.05		< 0.50	<1
Take-Home Message #3	: Not everyone needs RO.		Molybdenum	MO	0.02		< 0.10	10 ^{€0.2}
			Aluminum	AI	0.16			

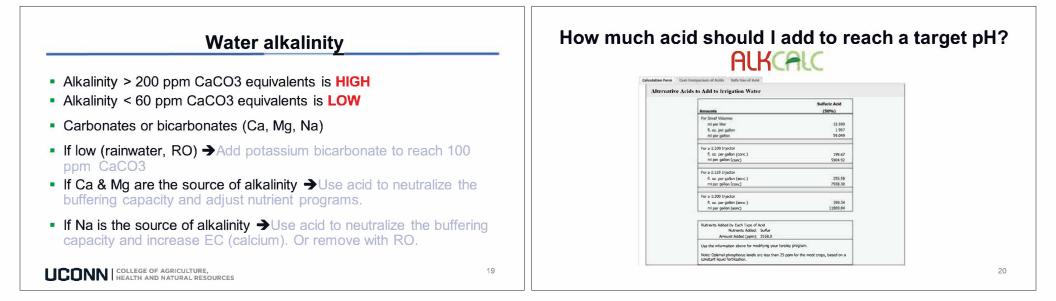
Factors that limit water suitability

Element	ldeal	High
Electrical conductivity (mS/cm)	< 0.5	>1.0
Sodium (ppm)	<30	>60

Water EC >0.5 mS/cm requires further analysis. Ranges in between are manageable, but should not be recirculated.

Electrical Conductivity


- Electrical conductivity (EC) is an <u>indicator of the total</u> <u>concentration of salts in the solution</u>.
- Essential or non-essential elements.
- Ions in that contribute to EC:
 - In water: Ca⁺², Mg⁺², SO₄⁻, Na⁺², Cl⁻, HCO₃⁻
 - In fertilizers: NO₃⁻, NH₄⁺, PO₄, K⁺, Ca⁺², Mg⁺², SO₄⁻, Cl⁻

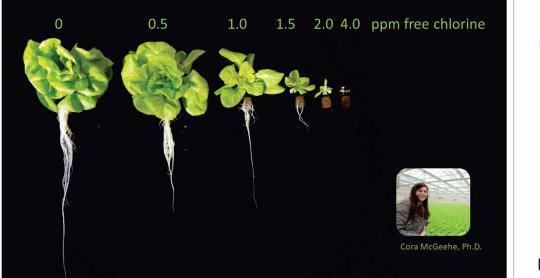

Units: 1 mS/cm = 1000 μ S/cm = 1dS/m=1 mmhos/cm = 1000 μ mhos/cm

Nutrients (ppm)	Water	Target 🔴	Action			
Nitrate-N	ND	125-225	None	Element	ldeal	Excessiv
Ammonium- N	ND	5-10	None	Chloride (ppm)	<50	>100
Potassium	3.7	200-350	None	Iron (ppm) TOTAL	<1.0	>4.0
Calcium	50	120-180	Add 40 ppm (use alternative N- source)	Tomatoes tolerate up to 100 p Cucumbers are sensitive to c		
Magnesium	3.3	30-60	None	Iron can be removed with pot	assium permangana	ate + filtration.

Class	EC (mS/cm)	Sodium (ppm)	Chloride (ppm)	Notes
1	0.5	<30	<50	Good for all purposes
2	0.5-1.0	30-60	50-100	Only when leaching is an option
3	1.0-1.5	60-90	100-150	Not recommended for sensitive crops (cucumber)

	<u>Management options:</u>	-
	 Know the crop's tolerance to specific ions. For ex., Tomato can grow with up to 100 ppm CI (OMAFRA, 2010). 	
es	 Use alternative water sources: replace the source or dilute (RO + non-RO). 	
3	3. Remove salts: reverse osmosis or ion exchanger.	
or	4. Do not use closed-irrigation systems with low-quality water.	
ber)	5. Adjust fertilizer program (lons of the same charge "compete")	
	 Increase cations to prevent sodium damage 	
	 Reduce Ca⁺², Mg⁺², SO₄- from fertilizer program 	
15	UCONN COLLEGE OF AGRICULTURE, 16	2

www.cleanwater3.org Search for Tools>WaterQual	Water chemistry summary
WaterQual Es This tool interprets the quality of a water source for use in irrigation of plants in greenhouses and nurseries.	Water EC is an indicator of the total amount of salts in the water.
Enter data for quality parameters you are interested in (you do not need to enter data for all the parameters) and click the 'Interpret' button. Total ions and alkalinity	Water complete nutrient analysis is used to determine fertilizer rates and management options.
pH Image: Constraint and the sequence of the seq	Use the water analysis to tailor the nutrition program.
Nutrients and ions	Water alkalinity is the pH buffering capacity of the water.
Nitrogen (N) Impl: or ppm Copper (Cu) Impl: or ppm Impl: or ppm </td <td>21 UCONN COLLEGE OF AGRICULTURE, HEALTH AND NATURAL RESOURCES</td>	21 UCONN COLLEGE OF AGRICULTURE, HEALTH AND NATURAL RESOURCES


Drinking water can also cause problems.

Measure the chlorine in your water

		Tap Water	Post- activated carbon filter	Deep Water Pond
Contraction of the	рН	7.9	7.9	5.1
	EC (µs/cm)	422	435	1963
	Dissolved oxygen (mg/L)	9.6	9.6	9.3
	Total Chlorine (mg/L)	1.86	0.60	0.56
	Free Chlorine (mg/L)	1.56	0.49	0.51
	ORP (mV)	789	725	690
	Total suspended solids (mg/L)	0	0.4	0.2
	Pythium	-	4	
	Total bacteria (cfu/mL)	0	24	7,400
UCONNIA McGehee, Agricultu HEALTH AND NATURAL F	RE, RESOURCES			

Chlorine interacts with ammonium

Chlorine at 1 and 2 mg/L is *safe* for tomatoes in hydroponics.¹ Chloride levels build up to 12 mg/L.

Chlorine by-products:

- Chlorate: tomatoes (0.2 mg/kg) and carrots (0.3 mg/kg)¹
- Chloride, chlorite, chlorate, & perchlorate

¹Dannehl et al. 2015 Effects of hypochlorite as a disinfectant for hydroponic systems on accumulations of chlorate and phytochemical compounds in tomatoes. European Food Research and Technology, http://dx.doi.org/10.1007/s00217-015-2544-5

UCONN | COLLEGE OF AGRICULTURE, HEALTH AND NATURAL RESOURCES

Chlorine (and agrochemicals) can be removed with Granular Activated Carbon (GAC) filters

Reports of plant pathogens by water source

Pathogen group	Well	Surface
Oomycetes		()
Phytophthora	1	70
Pythium	0	52
Bacteria	3	19
Fungi	10	44
Nematodes	0	11
Viruses	0	6
TOTAL	14	202

UCONN | COLLEGE OF AGRICULTURE, HEALTH AND NATURAL RESOURCES Adapted from: Hong C, Ch. 11-Component Analyses of Irrigation Water in Plant Disease Epidemiology from: Biology, Detection, and Management of Plant Pathogens in Irrigation Water APSPress, 2014

Common plant pathogens in hydroponics

Water molds: *Pythium, P. dissotoccum, Globisporangium irregulare, G. ultimum, Phytophthora*

Zoospores have flagella: actively move freely in the water. Other stages: move with organic matter.

Fungi: *Rhizoctonia, Fusarium, Thielaviopsis, Alternaria, Sclerotinia, Botrytis, etc.* Most structures move with organic matter.

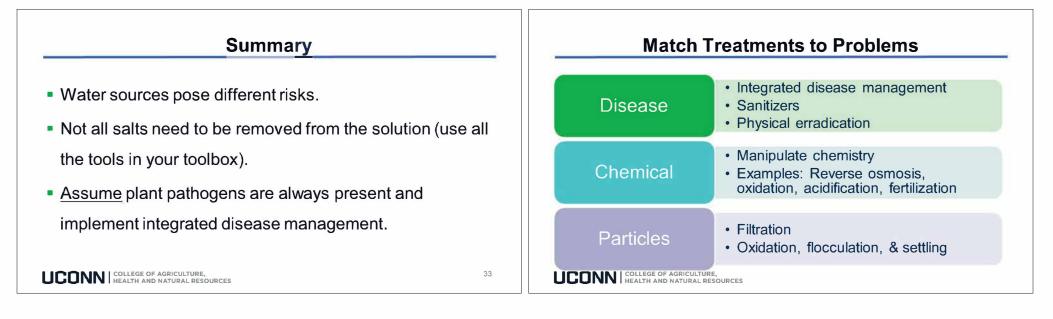
Bacteria: Clavibacter michiganensis subsp. michiganensis, Crazy root bacteria,

Viruses?

To control waterborne pathogens, start by removing organic debris from the water.

When it comes to plant pathogens:

- Water sources are a risk if they have been in contact with agricultural runoff.
 - Shallow wells
 - Recirculated solutions
 - Surface water bodies
- HOWEVER, water can spread pathogens.

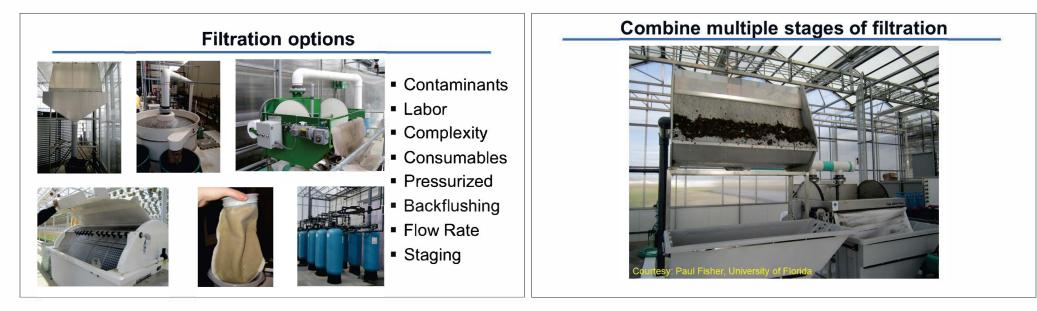

UCONN | COLLEGE OF AGRICULTURE, HEALTH AND NATURAL RESOURCES

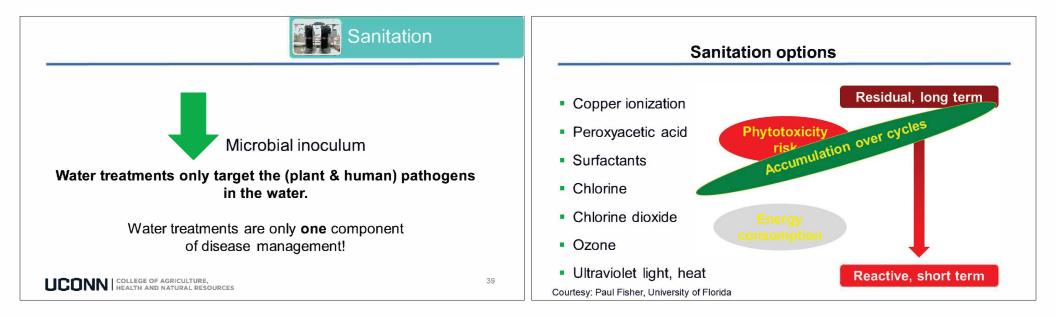
	larget Organism
	Botrytis cinerea
Testing water for pathogens	Fusarium spp.
reesting nation patting gone	F. oxysporum
	F. solani
	Olpidium bornovanus
NO Otata Diant Dianana 8 Jacant Oliain	O. brassicae
1. NC State Plant Disease & Insect Clinic	O. virulentus
	Phytophthora spp.
Assay of pear baits used to determine whether Phytophthora is	P. cactorum
	P. capsici
present in irrigation ponds.	P. cinnamomi
present in ingulori ponds.	P. cryptogea P. drechsleri
LIMass Disert Diserrentia Olinia	P. tragariae
. UMass Plant Diagnostic Clinic	P infestans
	P nicotianae
Test for Pythium presence.	Pythium spp.
	P. aphanidermatum
. University of Guelph Plant Testing Services	P. dissotocum
b. Oniversity of Gueiph Flant Testing Services	P. irregulare
	P. polymastum
DNA fingerprint of common pathogens	P. sylvaticum
	P. ultimum
	Rhizoctonia solani
	Sclerotinia spp.
	Thielaviopsis basicola

Target Organism	Detect io Level	Result
Botrytis cinerea	0	Not Detected
Fusarium spp.	7	High Levels
F. oxysporum	3	Low Levels
F. solani	1	Low Levels
Olpidium bornovanus	0	Not Detected
O. brassicae	0	Not Detected
O. virulentus	0	Not Detected
Phytophthora spp.	0	Not Detected
P. cactorum	0	Not Detected
P. capsici	0	Not Detected
P. cinnamomi	0	Not Detected
P. cryptogea	0	Not Detected
P. drechsleri	0	Not Detected
P. fragariae	0	Not Detected
P. infestans	0	Not Detected
P. nicotianae	0	Not Detected
Pythium spp.	7	High Levels
P. aphanidermatum		Moderate Levels
P. dissotocum	0	Not Detected
P. irregulare	0	Not Detected
P. polymastum	0	Not Detected
P. sylvaticum	0	Not Detected
P. ultimum	0	Not Detected
Rhizoctonia solani	0	Not Detected
Sclerotinia spp.	0	Not Detected
Thielaviopsis basicola	0	Not Detected
Verticillium spp.	0	Not Detected
V. albo-atrum	0	Not Detected
V. dahliae	Ö	Not Detected

32

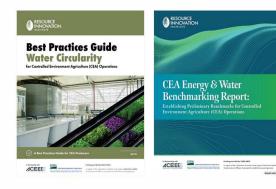
UCONN | COLLEGE OF AGRICULTURE, HEALTH AND NATURAL RESOURCES





Coarse particles → Coarse filters First stage of filtration

UCONN | COLLEGE OF AGRICULTURE, HEALTH AND NATURAL RESOURCES



Key points on irrigation design

- 1. Reduce water volume with precise irrigation (time and volume).
- 2. Design with water source and target problem in mind.
- 3. Match the technology to the problem.
- 4. Filter first, then sanitize.
- 5. Program a monitoring and maintenance schedule as part of the design
 - a. Monitoring constantly
 - b. Shocking the system between crops
- 6. Water treatments only target the pathogens in irrigation.
- 7. Implement a systems approach to prevent other sources of contamination and conducive conditions.

UCONN | COLLEGE OF AGRICULTURE, HEALTH AND NATURAL RESOURCES 41

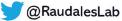
CEA Water Circularity Resources

Access the reports for free on the RII catalog

Best Practices Guide Featuring contributions from 15 Working Group member companies

Benchmarking Report

Featuring annual resource consumption and productivity of twelve producers growing a variety of crops in greenhouse and indoor facilities across the US.


Contact:

Rosa E. Raudales

860.486.6043

⊠rosa@uconn.edu

www.greenhouse.uconn.edu

You Tube The GreenhouseChannel

UCONN | COLLEGE OF AGRICULTURE, HEALTH AND NATURAL RESOURCES