Lighting up CEA Crops

Neil Mattson <u>nsm47@cornell.edu</u>

Outline

- When does supplemental lighting make sense?
- When do LED fixtures make sense over HID?
- Costs of lighting / calculator tools
- When do tunable spectra LEDS make sense?

Primary uses for horticultural lighting

- Photosynthetic lighting (light quantity)
 - Supplemental (in greenhouse)
 - Sole source (indoors/vertical farm/warehouse)
- Photoperiodic lighting (light duration)
 - Flowering/Vegetative
- Light quality on plants
 - Height
 - Leaf expansion
 - Red pigmentation (lettuce)
- (Insect and disease control)

Greenhouse lighting deserves a second look

Lamp type	Photosynthetic Photon Efficacy (μmol/J)
HPS magnetic ballast 400 W (1994)	0.98
HPS magnetic ballast 1,000 W (2014)	1.16
HPS double ended electronic ballast (2014)	1.70
LED best in 2014	1.70
LED best in 2016	2.39
LED best in 2021 (reported via DLC)	3.69

You live in a northern climate

Average outside DLI by month

Faust and Logan (2018) HortScience 53(9):1250-1257

Note: typical greenhouse light transmission is 50-70%

You produce crops during winter months

You notice issues with crop quality or yield from low light

You notice issues with crop quality or yield from low light

Winter lighting strawberry 'Albion'

DLI set point 15 mol/m2/d

■Ambient ■HPS ■LED

Jonathan Allred, Cornell

Winter lighting strawberry 'Albion'

DLI set point 15 mol/m2/d

■Ambient ■HPS ■LED

Jonathan Allred, Cornell

You wish to speed up crop turns Pansy grown for 3 weeks under different lamps

DLI (mol·m⁻²·d⁻¹) 8 10 12.5 16 19.5 23

Increasing light integral decreases time to flower for Pansy 'Crystal Bowl Supreme Yellow' (LD)

You wish to speed up crop turns

College of Agriculture and Life Sciences

12

High density crops (plugs, liners, seedlings)

High density crops (plugs, liners, seedlings) Ex: Argyranthemum at 73/70 Fin a double-poly greenhouse in Grand Rapids, MI

	Prop. DLI (mol m ⁻² d ⁻¹)	p. DLI m ⁻² d ⁻¹) Heating cost (\$/sf)		Total heat + light cost (\$/sf)
No suppl. Light	7	\$1.28 (5 weeks)	\$0	\$1.28
Suppl. Light	12	\$0.75 (3 weeks)	\$0.03 (2 weeks)	\$0.78

Heating with natural gas 15 x 400 W HPS lamps (75 μ mol m⁻² s⁻¹) for 18 hr

Source: Roberto Lopez, MSU

Head Lettuce

- 12 to 17 mol·m⁻²·d⁻¹ if vertical airflow fans are installed
- Greater light → increased incidence of tipburn
- Lower light → longer crop turn or lower biomass
- Photoperiod: continuous lighting (24 hr) can be used

'Ostinata' lettuce fresh weight response to DLI Adapted from A.J. Both, 1997

Lettuce

Symptoms of low light

Symptoms of high light

Baby Leaf Greens

- 18 to 30 mol·m⁻²·d⁻¹ (depending on crop)
- Not sensitive to tipburn at young age
- Lower light → longer crop turn or lower biomass
- Photoperiod: depends on species

Baby leaf greens yield increased up to 24-30 mol·m⁻²·d⁻¹

Photos & Figure: Charles Gagne, Cornell University

College of Agriculture and Life Sciences Collards

Lettuce

Herbs

- 12 to 20+ mol·m⁻²·d⁻¹ (depending on species)
- Need for more research
- Photoperiod: depends on species
 - Long day
 - Cilantro, dill, peppermint, spearmint
 - Short day
 - 'Blue Spice' basil, Stevi
 - Day neutral
 - 'Genovese' basil, oregano

Sweet Basil 'Nufar'

3 weeks after transplant

mol·m⁻²·d⁻¹ during seedling stage

12	23	35

CornelicaLS of Agriculture and Life Sciences

Walters and Lopez, Produce Grower Magazine

6

Vine crops

Cucumbers

Minimum: 15 mol·m⁻²·d⁻¹, Optimum: 30+

Tomatoes

Minimum: 20 mol·m⁻²·d⁻¹, Optimum: 30+

Sweet Peppers

Minimum: 15 mol·m⁻²·d⁻¹, Optimum: 20+

Photoperiod: all day-neutral plants for flowering

- Tomatoes and peppers require a 6-hour dark period
 - Continuous light causes physiological disorder (leaf chlorosis, smaller plant size and yield)

What type of light?

Lighting for several hundred hours per year

Examples

- year-round vegetable production in northern climates
- sole source lighting

Katherine Rogers and Kale Harbick DLI target: 17 mol·m⁻²·d⁻¹ Fixtures p

²·d⁻¹ Fixtures provide 200 μmol·m⁻²·s⁻² PPFD

Electricity costs are expensive

Costs per kWh vary from 8.8¢ (OK) to 22.7¢ (RI) Residential prices U.S. average is 13.2¢

State	Cost (¢/kWh)			
Hawaii	32.1			
Rhode Island	22.7			
Massachusetts	22.5			
Alaska	21.8			
Connecticut	21.5			
New Hampshire	20.0			
California	18.3			
New York	17.3			
Maine	17.3			
Vermont	16.7			

Need to add light during warm cloudy days (and don't want to add additional heat to canopy)

Thermal images of strawberry plants under supplemental HPS lighting (Left) and ambient solar irradiance (right)

24

Not relying on HIDs to fulfill greenhouse heating requirements

- Some greenhouses account for waste heat from HID and reduce boiler size accordingly
- LEDs still provide some waste heat

Limitations to electrical grid – adopting LEDs may help you expand without adding electrical capacity

https://www.thisiscolossal.com/ Photo by Tom Hegen

Selecting a lighting fixture

- Photosynthetic photon efficacy
 - Typical units µmol/j
 - Note: $umol/j \times 3.6 = mol/kWh$
- Initial cost (\$/fixture x # of fixtures)
- Lifespan (often reported to 70 or 90% output)
- Bulb replacement cost
- Installation cost
- Shading of fixture
- Uniformity of light plan
- Wavelength/light quality?

Which LEDs meet energy efficiency and reliability criteria?

DLC Horticultural Lighting Qualified Products List (QPL)

- Fixtures registered with DLC meet several minimum requirements
- Fixtures design for North American AC line voltage
- Many utility companies use this list to decide if a fixture qualifies for energy efficiency incentives
- Specification revised every 2 years to become more rigorous

Which LEDs meet energy efficiency and reliability criteria?

DLC Horticultural Lighting (version 2.1), minimum requirements:

- Photosynthetic Photon Efficacy (PPE) \geq 1.9 μ mol/j
- Photon Flux Maintenance $(Q_{90}) \ge 36,000$ hours
 - i.e. # of hours until light output is degraded to 90% of original output
- Driver lifetime \geq 50,000 hours
- Fan lifetime \geq 50,000 hours
- Warranty: fixtures \geq 5 years; lamps \geq 3 years

Design Lights Consortium

TESTED PHOTOMETRIC PERFORMANCE								
Tested Photosynthetic Photon Efficacy (400-700nm) 🕕	3.46 µmol/J							
Tested Photosynthetic Photon Flux (400-700nm) 🕕	1821 μmol/s							
Tested Photon Flux Blue (400- 500nm) 🕕	196 µmol/s							
Tested Photon Flux Green (500- 600nm) 🕕	103 µmol/s							
Tested Photon Flux Red (600- 700nm) 🕕	1522 μmol/s							
Tested Photon Flux Far Red (700- 800nm) 🕕	9 µmol/s							

Tested Photosynthetic Photon Flux (µmol/s) 1480 - 5000	
1480 - 5000	
Fested Photon Flux Blue (μmol/s)	
1460 - 5000	
Fested Photon Flux Green (μmol/s)	
380 - 5000	
fested Photon Flux Red (umol/s)	
1940 - 5000	
fested Input Wattage	
0 - 2000	
fested Photosynthetic Photon Efficacy (μmol/J)	
3.1 - 5	
Tested Power Factor	
0.00 1	
0.00 - 1	
Fested Total Harmonic Distortion	
0 - 0.24	
Tested DC Photon Efficacy (280-800nm)	
A D S	
1.8 - 5	

Approaches to Maximize

Profits

https://www.designlights.org/horticultural-lighting/

	Solid	State Lighting	Horticultural Lighting	Lighting Contro	ols Current Eff	orts News and Ev
Clear All Filters		H-PLS0JDZ	VR-2X-I-x-xx-xxx-xx-x	Fluence Bioengineering Inc.	Fluence Bioengineering	VYPR 2x PhysioSpec Indoor
Manufacturer 🚽	•	H-0WNDYAR	HT-02 Uniformity Pro 320W	FGI	Forever Green Indoors Inc	FGI Uniformity Pro 320
Listing Status +		H-ZI8J8X3	HT-02 Uniformity Pro 640W	FGI	Forever Green Indoors Inc	FGI Uniformity Pro LED
Technical Requirements Version 4 Number		H-AMU5JMO	ZK2-ML600- [SP01,SP02]/D	SANANBIO	Fujian Sanan Sino-Science Photobiotech Co., Ltd	625W LED grow light
Product Function + Product Categories +		H-S0O25G3	ZK2-TL300- [SP01,SP02]/D	SANANBIO	Fujian Sanan Sino-Science Photobiotech Co., Ltd	300W LED grow light
State Compliance		H-CNRSSYT	ZK2-TL600- [SP01,SP02]/D	SANANBIO	Fujian Sanan Sino-Science Photobiotech Co., Ltd	600W LED grow light
		H-R0A9JR4	GEHTL-HPPB4- (2,3)NX1	GE Current a Daintree company	GE Current, a Daintree company	ARIZE ELEMENT L1000

www.glase.org

ABOUT ~

MEMBERSHIP ~

GLASE Webinar Series

AI Technology at the

September 23, 2023

Controlled Environment

Agriculture Innovation Center

AI Technology at the Controlled

Environment Agriculture Innovation Center

Response of cannabinoid hemp to light

quantity

- Lighting research
- **Webinars**
- Newsletter

Cornell**CALS**

College of Agriculture and Life Sciences

Annual shortcourse

GLASE

Design considerations for large scale CEA projects

October 19, 2023

Response of cannabinoid hemp to light quantity and quality

GLASE Webinar Series Towards a Sustainable Lifecycle in Controlled Environment Agriculture (CEA) Mava Ezzeddine Schneider Electric

EVENTS ~

MY ACCOUNT ~

Towards a Sustainable Lifecycle in Controlled **Environment Agriculture**

August 17, 2023

CALENDAR

Panel: Small-Scale CEA Growers

hortlamp.uga.edu

Lighting Approaches to Maximize Profits

United States National Institute Department of of Food Agriculture and Agriculture

This work is funded by USDA-NIFA-SCRI Award Number # 2018-51181-28365 Project 'Lighting Approaches to Maximize Profits'

$\leftarrow \ \ \rightarrow \ \ G$		https://uga-lighting-calc.shinyapps.io/supplementalcalc/					
SupplementalCalc	Home	Add Location	Add Greenhouse Design	Required Supplemental Lighting	FAQ	Quit	

Lighting Approaches to Maximize Profits Welcome to our 'How large should my lighting system be' calculator!

With this calculator, users specify on how many days of year they want to be able to reach the target DLI (expressed as a percentage of 365 days). After entering what percentage of days you want to reach the target DLI, the calculator will determine the required lighting capacity, and provide a graphical summary of the lighting conditions you can expect in your greenhouse. This lighting system also estimates the demand charge, associated with the use of the lighting system. This calculator is particularly useful for the design of new lighting installations.

ជ

Enter Greenhouse Location

Location Name

(Enter a unique identifier for your Location)

Grand Rapids, MI
Zip Code (5 digits)
49501
Electricity Rate (\$/kWh) ?
\$0.105

Save

Step 1

Enter:

- Location name
- Zip code
- Electricity rate

College

Enter Greenhouse Design

Step 2A

Enter:

- Length
- Width
- Transmission % (typically) 45-70%

Step 2B

Enter:

- Target DLI
- Lighting efficacy (typically 1.2 3.0+ μmol/J)
- Percentage of day where you reach target DLI
 - Is 100% necessary? Requires greater installation
- Hours on, ex:
 - Lettuce can be lit continuously
 - Fruiting crops require 4-6 hr dark period
- Demand charge for electricity (\$/kW)
 - Based on highest usage in a single 15-minute period during the month

Required Supplemental Lighting

Location
Grand Rapids, MI
Design

Update	Adjust	Reset
🕹 Downlo	;	

gutter connect

Lownload Adjusted Results

Press the Update Button to view results

WARNING: Press the Adjust Button to adjust the supplemental DLI capacity AFTER clicking on the chart

Press the Reset Button to revert changes

Results

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%

Grower Input

Monthly Area Lighting %

Greenhouse Transmission (%)	Target DLI (mol/m2/day)	Lighting Efficacy (umol/J)	Electricity Cost (\$/kWh)	Hours On	Demand Charge (\$/kW/month)	Percentile (%)	Area (ft2)
60.00	17.00	3.00	0.10	20.00	6.00	90.00	21600.00

Sunlight (accounting for transmission)

Red line indicates the target DLI of 17(mol/m2/d)

Weekly Lighting Cost

Week	\$ Per ft2	\$ Per acre	\$ Total Design
1	0.079	3,448	1,710
2	0.065	2,837	1,407
3	0.056	2,422	1,201
4	0.048	2,110	1,046

Annual Lighting Cost

\$ Per ft2	\$ Per acre	\$ Total Design
1.435	62,519	31,001

Annual Demand Cost

\$ Per ft2	\$ Per acre	\$ Total Design
0.393	17,135	8,496

Supplemental Light

Required Lighting System Capacity

176 umol/m2/s

Max Supplemental DLI Capacity

College

Comparing 100% vs. 90% of days with target met

Annual Lighting Cost

\$ Per ft2	\$ Per acre	\$ Total Design
1.435	62,519	31,001

Annual Demand Cost

Annual Lighting Cost

\$ Per ft2 \$ Per acre		\$ Total Design					
1.481 64,492 31,979							
Annual Demand Cost							
\$ Per ft2	\$ Per acre	\$ Total Design					
0.497	21,637	10,729					

\$ Per ft2	\$ Per acre	\$ Total Design		\$ Per ft2	\$ Per acre	\$ Total Design
0.393	17,135	8,496		0.497	21,637	10,729
90% of days		vs tar	get me	et	100% of d	ays

ted line indicates the maximum supplemental DLI needed, which is 12.7(mol/m2/d)

```
Required Lighting System Capacity
```

176 umol/m2/s

Max Supplemental DLI Capacity

12.7 mol/m2/d

Red line indicates the maximum supplemental DLI needed, which is 16.04(mol/m2/d)

Required Lighting System Capacity 223 umol/m2/s

Max Supplemental DLI Capacity

16.04 mol/m2/d

90% of days

target met

100% of days

Target DLI Reached

TRUE

Fixtures needed and electricity cost - Inputs

	Α	В	С	D	E				
1	LAMPS NEEDED CALCULATOR								
2	estimating lamp needs for greenhouse space								
3	© Neil Matts	on, Cornel	l University	y 4/23/15					
4	Updated Ma	y 2021, no	te that PPE	in µmol/J	is now used				
5	Use the tabs	Lamp 1 an	d Lamp 2 t	o input the	e data for tv				
6									
7	Fill in yellow	highlighted	d boxes						
8	200	Target inst	tantaneous	s light inter	nsity (µmol/				
9	1090	Lamp pow	e <mark>r con</mark> sum	ption (W)					
10	43560	Area to lig	ht (square	feet), note	that there				
11	1.80	Photosynt	hetic photo	on efficacy	(PPE, µmol/				
12	10%	percent lig	ht lost fror	m edge eff	ects				
13	2000	total hour	s lights are	on per yea	ar				
14	\$0.160	cost of ele	ctricity (\$/I	kWh)					
15	\$350	cost of ind	lividual ligh	nt fixture (\$	/fixture)				

Hypothetical Fixture 1

HPS DE

- 200 $\mu mol\ m^{-2}\ s^{-1}$
- 2,000 hours annually

44

Fixtures needed and electricity cost - Results

	А	В	С	D	Е	F	G	H		
17	Calculations	(don't mo	dify these l	ooxes)						
18	4,047	Square me	quare meters to light (note 1 square meter = 10.7639 square feet)							
19	1,962	Lamp outp	amp output μmol/s							
20	413	Light fixtu	res needed	l without e	dge effects	5				
21	459	Light fixtu	res needed	l with edge	effects					
22	\$160,650	Total cost	of light fixt	ures (assu	ming edge	effects)				
23	1,000,620	kWh of ele	ectricity to	light this m	any lamps	for the giv	en numbe	r of hours		
24	\$160,099	electricty o	cost (\$/are	a in cell A8	/yr)					
25	\$3.68	electricity	cost (\$/sqı	uare foot/y	r)					
26	\$39.56	electricity	cost (\$/m²	/yr)						
27										
28	*Note* place	ement of la	mps shoul	d be deter	mined by a	a lighting p	rofessional	to optimize		
29		Lamps nee	eded may b	be somewh	at more if	want unifo	orm lighting	g at the edges		

https://www.hortlamp.org/outreach.html

Comparing 2 Fixtures

	Α	В	С	D	E				
7	Fill in yellov	v highlight	ed boxes						
8	200	Target inst	Γarget instantaneous light intensity (μmol/r						
9	1090	Lamp pow	er consum	ption (W)					
10	43560	Area to lig	ht (square	feet), note	that there a				
11	1.80	Photosynt	hetic photo	on efficacy	(PPE, µmol/				
12	10%	percent lig	ght lost from	n edge eff	ects				
13	2000	total hour	s lights are	on per yea	ar				
14	\$0.160	cost of ele	ctricity (\$/I	‹Wh)					
15	\$350	cost of ind	lividual ligh	t fixture (\$	/fixture)				
16									
17	Calculation	s (don't m	odify these	boxes)					
18	4,047	Square me	eters to ligh	nt (note 1 s	quare meter				
19	1,962	Lamp outp	out µmol/s						
20	413	Light fixtu	res needed	without e	dge effects				
21	459	Light fixtu	res needed	with edge	effects				
22	\$160,650	Total cost	of light fixt	ures (assu	ming edge e				
23	1,000,620	kWh of ele	ectricity to	light this m	any lamps f				
24	\$160,099	electricty of	cost (\$/area	a in cell A8	/yr)				
25	\$3.68	electricity	cost (\$/squ	iare foot/y	vr)				
26	\$39.56	electricity	cost (\$/m²,	/yr)					
27									
		alculations	Lamp 1	Lamp 2	+				

46

Comparing 2 Fixtures

Lamp 1

- DE HPS
- PPE: 1.8 μmol/J
- Cost: \$350

Lamp 2

- LED
- PPE: 3.1 μmol/J
- Cost: \$950

200 μmol m⁻² s⁻¹ target, 2,000 hours annually Lighting 1 acre, 10% light loss to edges Electricity at **\$0.08 vs. \$0.16** / kWh

Comparing 2 Fixtures

	А	В	С	D	E	F	G		
28	Summary s	tatistics co	mparing L	amp 1 vs. L	.amp 2 (do	n't modify	these boxes		
29	\$3.69	Cost to pu	rchase Lan	np 1 (\$/sf)					
30	\$10.90	Cost to pu	rchase Lan	np 2 (\$/sf)					
31	\$1.84	Electricity	cost Lamp	1 (\$/sf/yr)					
32	\$1.07	Electricity	cost Lamp	2 (\$/sf/yr)					
33	9.36	Simple pay	yback in ye	ars for Lan	np <mark>2 v</mark> s. Lar	mp 1 (diffe	rence in upfı		
34									
35	*Note* placement of lamps should be determined by a lighting professional								
36		Lamps nee	eded may <mark>k</mark>	be somewh	nat more if	want unifo	orm lighting a		

Simple payback =

upfront price difference annual electricity price difference

Comparing 2 Fixtures

	А	В	С	D	E	F	G	
28	Summary s	tatistics co	mparing L	amp 1 vs. L	.amp 2 (do	n't modify	these boxe	es)
29	\$3.69	Cost to pu	rchase Lan	np 1 (\$/sf)				
30	\$10.90	Cost to pu	rchase Lan	np 2 (\$/sf)				
31	\$3.68	Electricity	cost Lamp	1 (\$/sf/yr)				
32	\$2.13	Electricity	cost Lamp	2 (\$/sf/yr)				
33	4.68	Simple pay	yback in ye	ars for Lan	np 2 vs. Lar	np 1 (diffe	rence in up	ofre
34								
35	*Note* pla	cement of	lamps sho	uld be dete	ermined by	a lighting	profession	al t
36		Lamps nee	eded may b	be somewh	at more if	want unifo	orm lighting	g a'

Simple payback =

upfront price difference annual electricity price difference

Importance of light spectrum Greenhouse Supplemental Lighting

- Sunlight provides full spectrum
- Most spectral studies don't see significant differences in the greenhouse environment
- Favor high efficacy fixtures unless known crop responses to spectrum

Response of baby leaf greens to greenhouse lighting from LED or HPS

Lettuce results across 12-months

- DLI 17 mol·m⁻²·d⁻¹
- HPS: Gavita Pro 6/750e Flex US DE
- LED: Philips GreenPower toplighting DR/B -Low Blue
- HPS yield favored in Nov. to Feb., plus June
- LED yield favored in Aug. and Sept.
- Averaged across year, yield not impacted by fixture

Lettuce relative fresh yield HPS vs. LED

T-Test comparing HPS to LED light for a given month, NS, *, **, *** are non-significant or significant at $P \le 0.05$, 0.01, or 0.001, respectively

Importance of light spectrum Sole-Source Lighting

Vertical Farm with leafy greens
 Spectral distribution broad spectrum including far-red

Photo: Plenty

www.glase.org

Neil Mattson

nsm47@cornell.edu

hortlamp.uga.edu

This work is funded by USDA-NIFA-SCRI Award Number # 2018-51181-28365 Project 'Lighting Approaches to Maximize Profits'